
Mobile Application
Programming
Controls

Views
UIView instances and subclasses

Form a tree rooted at the window

Have a backing store of pixels that are drawn seldomly,
then composited to form the full user interface

Coordinate system for drawing uses bounds property

Positioned within parent using center or frame property

Subclasses typically override the draw method

Receive touches overriding super-class methods
touchesBegan, touchesMoved, and touchesEnded

Example: Knob

knobView.bounds
knobRect
nibRect
angle

knobView.bounds
knobRect
nibRect
angle

Example: Knob

Touches
Sub-class UIResponder or UIView

touchesBegan(touches: Set<UITouch> with event:)

touchesMoved(touches: Set<UITouch> with event:)

touchesEnded(touches: Set<UITouch> with event:)

touchesCancelled(touches: Set<UITouch> with event:)

Touches
Set<UITouch>

UITouchUITouch UITouch... ...

locationInView
previousLocationInView

viewwindow
timestamptapCountphase

Problem: Notifying of Change

KnobViewControlling
Object

Target-Action

Controlling Object

Target-Action

Reference stored property

Switch (UIControl)

Controlling Object

Target-Action
addTarget(action, forControlEvents)

Controlling Object

Reference entry in UIControl
targets collection

Switch (UIControl)

Target-Action

UIControlValueChanged

Controlling Object

Reference entry in UIControl
targets collection

Switch (UIControl)

Target-Action

on property

Controlling Object

Reference

Switch (UIControl)

UIControl
Uses the Target-Action Mechanism

Allows simple distribution of events generated by controls,
such as UIControlEvent.ValueChanged

Interested parties call addTarget(action, forControlEvents) to
receive updates

Call sendActionsForControlEvents() to alert interested parties
when your control has an event occur

You can send custom events as well

UIControl
State

Enabled, Highlighted, Selected

Tracking

beginTracking, continueTracking, endTracking

Content Alignment

Horizontal - Left, Center, Right, Fill

Vertical - Left, Center, Right, Fill

Problem: 2 Objects Talking

Object 1 Object 2

Problem: 2 Objects Talking

Object 1 Object 2?

Delegates

Assist in a task that a class
doesn’t know how to do itself,
and thus is an alternative to
subclassing complex classes

Also useful for sending
messages from a class to its
containing class

Delegates

Assist in a task that a class
doesn’t know how to do itself,
and thus is an alternative to
subclassing complex classes

Also useful for sending
messages from a class to its
containing class

Delegates

UIApplication

UIApplicationDelegate

application(didFinishLaunchingWithOptions:)

buildUI

Delegates

Assist in a task that a class
doesn’t know how to do itself,
and thus is an alternative to
subclassing complex classes

Also useful for sending
messages from a class to its
containing class

ComplexClass

ContainedClass
Delegate

Delegates
A delegate is an object that performs actions on the
behalf of another object

A common use is a data model object alerting a
controller of changes to its data, which then tells view
objects about the change

Another use of them is a view object having a controller
object interact with the program data model on its
behalf when the user triggers events

6 bits of code are required to properly set up both
sides of a delegate connection between two objects

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(_ touches: Set<UITouch>, with event: UIEvent?)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func draw(_ rect: CGRect)
 {
 }
}

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(_ touches: Set<UITouch>, with event: UIEvent?)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func draw(_ rect: CGRect)
 {
 }
}

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

4. Delegate Protocol Conformity
5. Delegate Assignment
6. Delegate Protocol Method(s)

import UIKit

protocol KnobDelegate: class
{
 func knob(knob: Knob, rotatedToAngle angle: Float)
}

class Knob : UIView
{
 private var _knobRect: CGRect = CGRectZero
 private var _angle: Float = 3.0 * Float(M_PI) / 2.0

 var angle: Float
 {
 get { return _angle }
 set
 {
 _angle = newValue
 setNeedsDisplay()
 }
 }

 weak var delegate: KnobDelegate? = nil

 override func touchesMoved(_ touches: Set<UITouch>, with event: UIEvent?)
 {
 let touch: UITouch = touches.anyObject() as UITouch
 let touchPoint: CGPoint = touch.locationInView(self)
 let touchAngle: Float = atan2f(
 Float(touchPoint.y - _knobRect.midY),
 Float(touchPoint.x - _knobRect.midX))

 angle = touchAngle
 delegate?.knob(self, rotatedToAngle: angle)
 }

 override func draw(_ rect: CGRect)
 {
 }
}

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, KnobDelegate
{
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions l: [NSObject: AnyObject]?) -> Bool
 {
 window = UIWindow(frame: UIScreen.mainScreen().bounds)
 window?.makeKeyAndVisible()

 var knob: Knob = Knob(frame: window!.frame)
 knob.backgroundColor = UIColor.darkGrayColor()
 knob.delegate = self
 window?.addSubview(knob)

 return true
 }

 func knob(knob: Knob, rotatedToAngle angle: Float)
 {
 println("Knob rotated to angle: \(angle)")
 }
}

1. Delegate Protocol
2. Delegate Property
3. Delegate Invocation

4. Delegate Protocol Conformity
5. Delegate Assignment
6. Delegate Protocol Method(s)

The method invocation here…

goes here.

Closure Properties
Self-contained code snippets that can be invoked at a
later time to accomplish a task

Have a syntax that looks odd at first, but is consistent

Are similar to listener objects with one method in Java
or lambda expressions in other languages

Are called “closures” because they store the current
values of referenced variables at the time of their
creation, thus “closing over” the referenced data

Result in very disorganized code if used imprudently

